Public key cryptography based on semigroup actions

نویسندگان

  • Gérard Maze
  • Chris Monico
  • Joachim Rosenthal
چکیده

A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build interesting semigroup actions using finite (simple) semirings. The practicality of the proposed extensions rely on the orbit sizes of the semigroup actions and at this point it is an open question how to compute the sizes of these orbits in general and also if there exists a square root attack in general. In Section 5 a concrete practical semigroup action built from simple semirings is presented. It will require further research to analyse this system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 7 Public Key Cryptography based on Semigroup Actions ∗

A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build in...

متن کامل

Public Key Cryptography based on Semigroup Actions

A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build in...

متن کامل

Ja n 20 05 Public Key Cryptography based on Semigroup Actions ∗

A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [21] and Koblitz [9] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we extend such a generalization to the setting of a semigroup action (G-action) on a finite set. We define these extended protocols, show how it is related to the general Diffi...

متن کامل

Ja n 20 05 Public Key Cryptography based on Semigroup Actions ∗ Gérard Maze

A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [21] and Koblitz [9] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we extend such a generalization to the setting of a semigroup action (G-action) on a finite set. We define these extended protocols, show how it is related to the general Diffi...

متن کامل

Public Key Protocols over the Ring E

In this paper we use the nonrepresentable ring E (m) p to introduce public key cryptosystems in noncommutative settings and based on the Semigroup Action Problem and the Decomposition Problem respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. in Math. of Comm.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007